Кафедра автоматизации технологических процессов и производств

Студенческий научный кружок

«Прикладная урбанистика в городском развитии и благоустройстве»

Научный руководитель:

ст. преподаватель Заболотная В.В.

Студентка:

Лупалова Т.

Цель проекта

Разработать автоматизированную систему управления коммунальным освещением с внедрением оборудования на базе коммуникационной шины KNX.

Задачи проекта

- □ проанализировать технологию работы коммуникационной шины KNX;
- рассчитать и подобрать оборудование для объекта автоматизации;
- разработать проект автоматизации и сконфигурировать децентрализованную систему управления освещения;
- разработать конструкторскую документацию и схемы электрические, автоматизации коммунального освещения;
- выполнить расчет экономических показателей и определить срок окупаемости проекта автоматизации;
- рассмотреть вопросы безопасности труда, пожарной и экологической безопасности проекта.

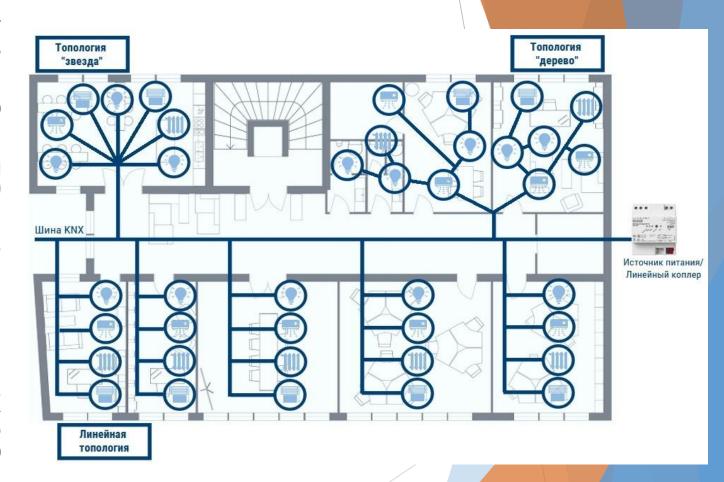
Актуальность проекта

Актуальность проекта, состоит в ЧТО использование TOM, интеллектуальных датчиков движения, присутствия связанных воедино шиной KNX позволяет, построить единую децентрализованную систему автоматизации и управления коммунальным освещением жилого многоквартирного дома. А также позволяет производить удаленный конфигурацию мониторинг и оборудования. Тем самым достигается гибкость работы системы освещения и экономия денежных средств жильцов дома.

Системы управления освещением

Наиболее популярные протоколы управления освещением сейчас:

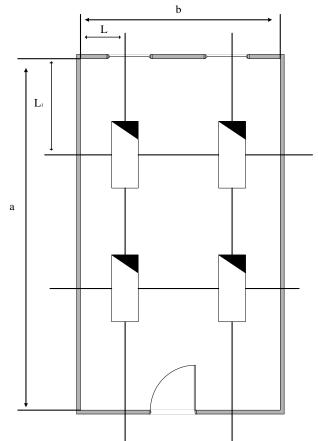
- o DALI.
- o KNX.
- o DIM(0-10V).
- o DMX.
- Слаботочные и IP системы,


Технология работы шины KNX

Стандарт KNX предусматривает использование нескольких вариантов передачи сигнала:

- Витая пара (трансфер на скорости до 9600 бит/с).
- □ Электрическая линия (пропускная способность до 1200 бит/с).
- □ Радиочастотные каналы (данные передаются на частотах 433 и 868 МГц).
- □ ІР-сеть (до 10 Мбит/с).

Основу составляет шина, объединяющая все оборудование.


Все программирование системы KNX осуществляется в программе ETS (Engineering Tool Software). Это обеспечивает унификацию и совместимость решений разных производителей.

Методика и расчет оборудования автоматизации

При проектировании осветительной установки необходимо решить ряд вопросов.

- □ Выбор типа источника света.
- Выбор типа светильников с учетом характеристик светораспределения, экономических показателей, условий среды, требований взрыво и пожаробезопасности.
- Распределение светильников, и определение их количества.

УЗИП фирмы АВВ

Автоматический выключатель марки ABB \$201

Выбор датчиков

Предполагается выполнить проект на базе децентрализованных компонентов сети. Это позволит упростить электрическую схему, повысит надежность и быстроту обслуживания коммунального освещения.

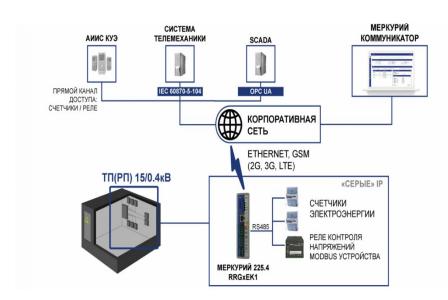
Сумеречное реле ABB TW

Выбор осветительных приборов

Для освещения внутренних коридоров, лестничных площадок, подвала и технического этажа применяется светильник L9-LEDW круглый настенно-потолочный светодиодный светильник. Отличается энергоэффективностью ВЫСОКОИ благодаря долговечностью высококачественной LED технологии, а также за счет диффузного светового рассеивателя производит широкое распределение освещения.

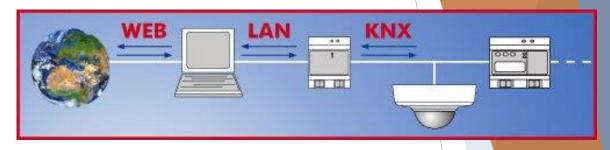
Для уличного освещения и освещения парковочных мест, выбран прожектор FL2N-LED. Это поворотный LED-прожектор для настенного монтажа, поворачивается в трех осях, угол наклона фиксируется с помощью запирающего механизма. Корпус из литого алюминия с антикоррозийными винтами из нержавеющей стали.

LED светильник L9-LEDW



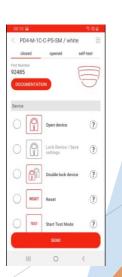
LED-прожектор FL2N-LED

Выбор элементов энергоучета

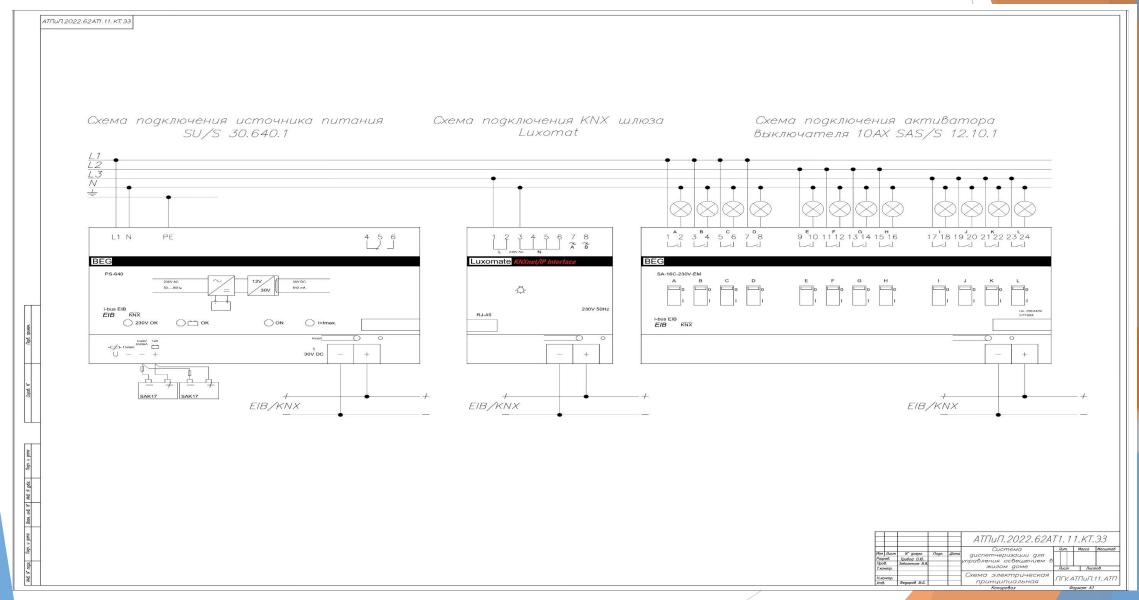


Учет потребления электроэнергий системой освещения будет осуществляться ПОМОЩЬЮ двухтарифного счётчика электроэнергии Меркурий 234 ARTM. Который предназначен для активной и реактивной электрической энергии и мощности, а также для измерения параметров электрической сети в трехфазных сетях переменного тока последующим хранением, анализом и передачей накопленной информации в центры сбора данных АИИСКУЭ (автоматизированная информационно-измерительная коммерческого система учёта электроэнергии).

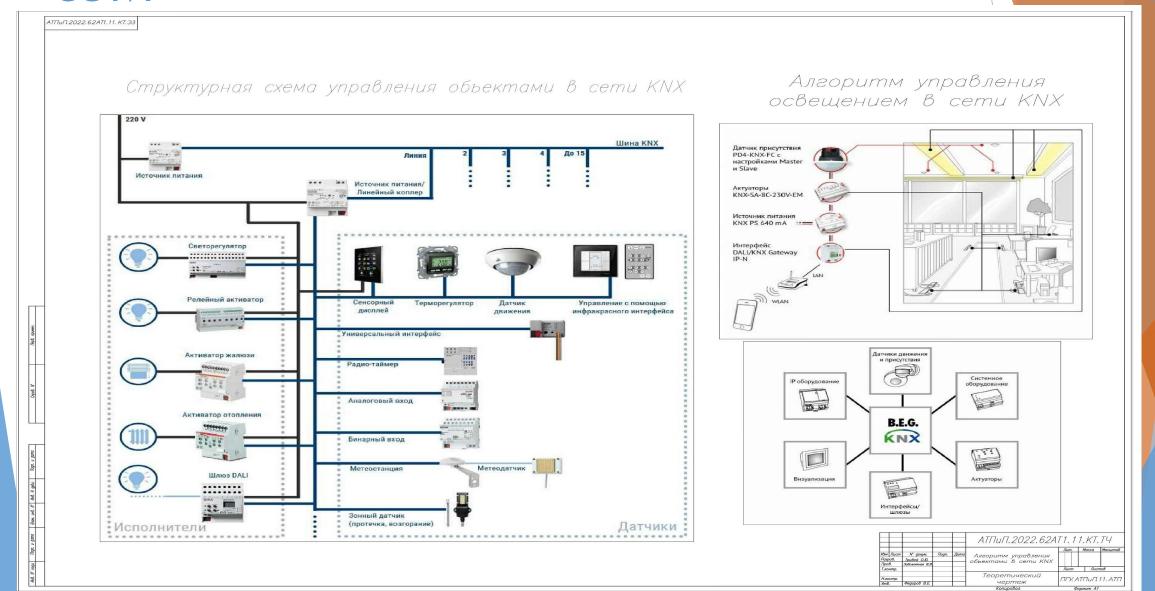
Выбор элементов автоматизации и сети


Для программирования удаленного доступа к каждому узлу децентрализованной системы автоматизации освещения используется IP шлюз KNXnet/IP Interface. Задачей ЭТОГО устройства, является соединение линий KNX при помощи сетей передачи данных использованием межсетевого протокола (IP), a также фильтрация и передача телеграмм.

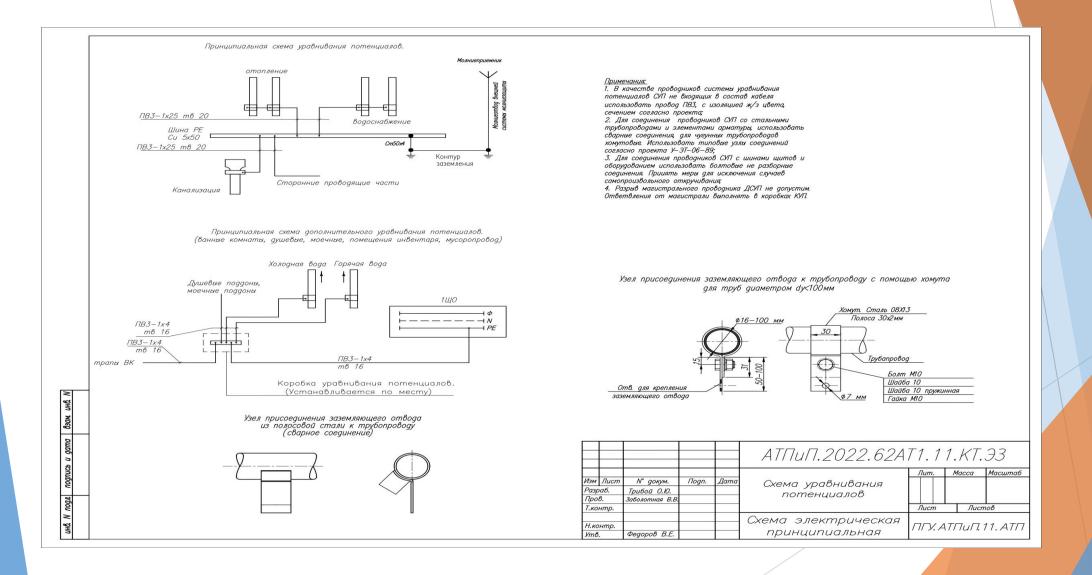
IP шлюза KNXnet/IP Interface



Расчет экономических показателей проекта


NIII	Параметр	Техподполье	1-2 этаж	3-8 этаж	9-11 этаж	Тех этаж	Всего:
1	P _Φ , B _T	376,0	700,0	900,0	810,0	240,0	-
2	P _{yer} , B _T	188,0	104,0	132,0	225,0	35,0	-
3	Ки	0,5	0,6	1,0	1,0	0,8	-
4	Wг, кВт·ч/год	282,0	450,2	1032,0	1035,0	206,3	-
5	Кπ	1,4	2,2	1,4	1,4	1,0	-
6	Кис	0,8	0,1	0,1	0,1	0,1	-
7	ΔW_1 , к B т-ч/год	117,0	208,0	522,0	285,0	127,0	1259,0
8	Δ W ₂ , кВт·ч/год	12,5	23,6	86,4	50,7	16,2	189,4
9	Δ W ₃ , кВт·ч/год	41,6	78,6	288,0	156,0	54,0	618,2
10	Δ W ₄ , кВт·ч/год	43,8	68,6	270,0	126,0	54,0	562,4
11	Δ W ₅ , кВт·ч/год	-	-	-	-	-	0,0
12	Δ W ₆ , кВт-ч/год	127,6	92,0	204,0	111,0	98,0	632,6
13	Δ W, кВт·ч/год	342,5	470,8	1370,4	728,7	349,2	3261,6
14	$\Delta \ W_{\Sigma}, \kappa B$ т· ч/год	476,0	1049,8	1918,6	1020,2	349,2	4813,8
15	С, р/год	266,6	587,9	1074,4	571,3	195,6	2695,7

N п/п	Показатель	Ед. изм.	Значение	
1	Капитальные вложения	руб.	171 371	
2	Годовой экономический эффект	руб.	65 852	
3	Срок окупаемости затрат на автоматизацию	год, месяц	2 года 8 месяцев	


Система диспетчеризации для управления освещением в жилом доме

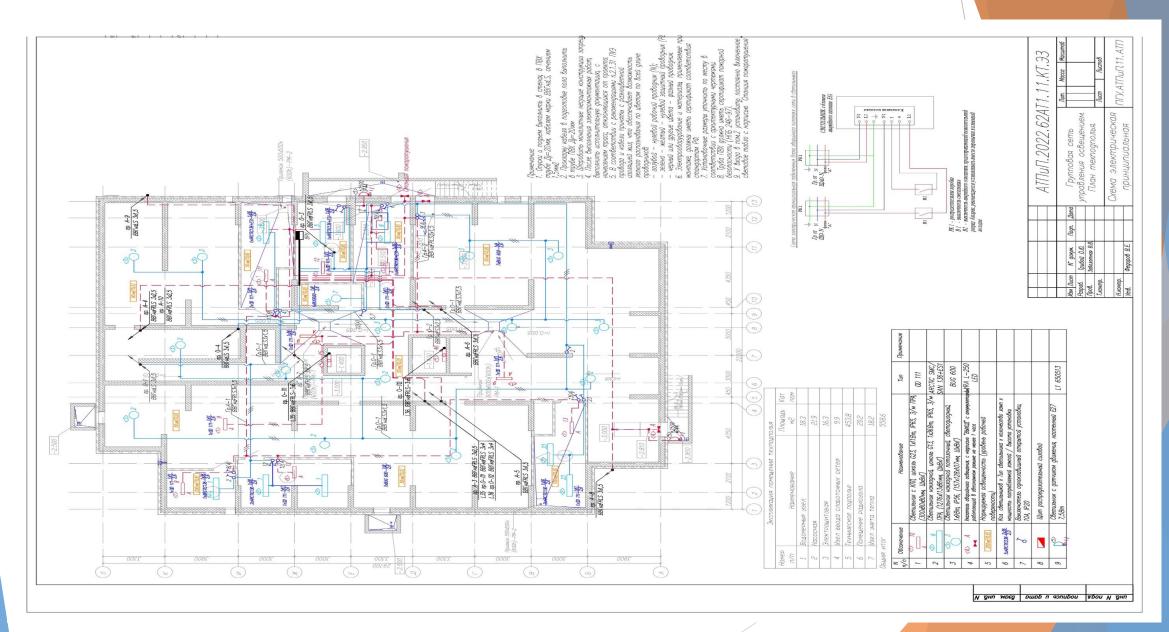

Алгоритм управления объектами в сети

Схема управления потенциалов

Групповая сеть управления освещением

Проектируемая система позволит

Выявлено, что внедрение децентрализованного подхода управлением светильниками по шине KNX существенно упрощает электросхему, процесс её обслуживания и мониторинга за объектом. Не исключено, что в будущем система автоматики на основе шины KNX позволит изменить функции управления коммунальным освещением на других объектах города, обслуживаемых Рыбницким РЭС, участком внутридомовых электрических сетей (ВДЭС).